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1 The electron lens as a collimation device: the
idea

The electron lens is a device able generating an electron beam which trav-
els in the same direction of the proton beam. The electron beam shape
can be controlled by the shape of the emitting cathode, in order to serve
different purposes, i.e. abort gap cleaning, beam-beam compensation and
collimation.

In the last years the LHC collimation system has been performing over
the expectations, providing the machine with a nearly perfect efficient clean-
ing system. Nonetheless, when trying to push the existing accelerators to -
and over - their design limits, all the accelerator components are required
to boost their performances. In particular, in view of the high luminosity
frontier for the LHC, the increased intensity would ask for a more efficient
cleaning system. In this framework innovative collimation solutions should
be evaluated. In this work intends to study the applicability of an hollow
electron lens as beam halo scraper for the LHC.

Figure 1: Ideal electron lens distribution.

The hollow electron beam is a device which generates a hollow beam
of electrons travelling in the same direction of the proton beam. The de-
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scription of the details about the hollow beam generation and technical
specifications is not the purpose of this report, and can be found in many
past pubblications[][][]. In this work we consider an ideal electron distri-
bution, which consists of a azymuthal-symmetrical distribution of electrons
contained between internal radius R1 and external radius R2. The absolute
value of R1 can be arbitrary modified by acting on the solenoidal magnetic
field that confines the electron beam, but the ratio g = R1/R2 is fixed by
the geometry of the cathode. For the calculation of the transverse electric
and magnetic fields we will approximate the finite-lenght cylinder with an
infinite one, which is legitimate since the transversal space of interest is of
the order of few millimeters, while the total device lenght is typically L = 2
m. The fringe fields are neglected.

The electron beam radial profile can be either considered a uniform dis-
tribution between R1 and R2 (pefect electron lens model), or a more realistic
beam profile can be implemented (radial e-lens model model). In both cases
the normalized function f(r) does not depend on the angular coordinate
and it is defined as:

f(r) = I(r)/IT =
2π

IT

∫ r

R1

r ρ(r) dr (1)

where I(r) is the current enclosed in a radius r, IT is the total electron
beam current and ρ(r) is the electron beam density distribution; in the
following the function f(r) will be referred as shape function. In case of
perfect electron lens the shape is simply:

f(r) =


0 r < R1

r2−R2
1

R2
2−R

2
1

R1 < r < R2

1 r > R2

(2)

An example of a measured beam profile, and the fit of a density function
ρ(r), are shown in Figure 2.

Thanks to the cylindrical symmetry, the EM field in the space enclosed
by the ideal electron beam is perfectly zero, thus not affecting the beam
core. On the contrary, protons with transverse radius r =

√
x2 + y2 > R1

will feel both the electrostatic force and the Lorentz force for the whole
interaction length L. As shown if figure 3, the two forces will sum up when
the versus of the proton velocity is opposite to the electron one; otherwise
the two forces will have opposite versus.

In our approximation the resulting force can be easily calculated by using
the Gauss and the Biot-Savart laws:

F (r) =
Ir qp (1± βpβe)

2πε0 rve
r (3)
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Figure 2: On the left had side, 2D hollow beam measured profiles for a total
current of 44 mA, V=.5 KV. On the right hand side the profile in the y=0
plane is shown, both experimental data (dotted line) and fit (red curve).

Figure 3: Electrostatic and magnetic force for different proton directions.
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where Ir is the current encompassed by the radius r, qp is the proton charge,
βp and βe are the relativistic β for the proton and the electron beam ,and
r = (x + y)/r is the radial inward direction. Using the definition of shape
function f(r) and keeping in mind the definition of angular velocity ω =
θ/t = (vp/r), the crossing time t = L/vp, and the centrifugal force (1/r) =
F/(mv2p), it is possible to calculate the integrated kick for a particle which
crosses the electron lens at transverse amplitude r:

θ(r) =
2L f(r) IT (1± βeβp)
4πε0 r (Bρ)pβeβp c2

(4)

where (Bρ)p = mpvp/q = 3.3356(mv)p[GeV/c] is the magnetic rigidity of
the proton beam.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  0.5  1  1.5  2  2.5  3  3.5  4

k
el

en
s 

[n
ra

d
]

rpart [mm]

Radial model (RED)
Perfect elens (BLUE) 

R = 4 !

R = 6.8 !

1 x

x2

Figure 4: Radial kick given by the electron lens, for both perfect electron
lens model and radial profile model.

The typical kick generated by a 1.2 A electron lens on the 7 TeV LHC
beam is presented in Figure 4; the details about simulation parameters are
described in in Section 2.1). It is interesting to notice how the radial pro-
file provides larger kick in the region between 4.5σx and 6σx, but it is less
effective for low-amplitude particles. Both moles have been implemented
in the simulation and tested. Even though preliminary results have been
calculated using the perfect electron lens model, the full statistic has been
performed only for the radial profile mode. For such reason in this work we
present only results from simulations including the radial profile.
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Since the electrostatic force is always directed inward, and the electron
beam versus is usually chosen such as the Lorentz force adds up to the
electric one, the kick given by the electron lens is always directed inwards
(focusing), both for the vertical and for the horizontal plane. It follows that,
if the kick given by the electron lens is acting constantly on the particle mo-
tion (DC mode), the electron lens field becomes a part of the periodic lattice
and the single particle invariant for stable particles must be re-defined. The
electron lens is therefore expected to introduce a deformation of the phase
space together with a positive tune shift of the particle, which would be
larger for large particle amplitudes. On the other hand, the DC mode is not
the only possible mode of operation of the electron lens: given the extremely
fast rising time of the cathode modulator (250 ns) it is possible to modulate
the intensity of the electron beam and even to switch it ON-OFF on a turn-
by-turn basis. This allows us to use the electron lens both continuously or
with a specific modulation. In particular, three different operational modes
have been identified:

- DC mode: the electron lens is used in continuous.

- AC mode: the electron lens current is modulated in order to achieve
resonance condition with the particle betatron oscillation.

- “white noise” mode: the electron lens is randomly switched on or off
in order to steadily heat the beam.

In the next chapters the details of the different operation modes and the
effect on the LHC beam as predicted by simulations for the LHC case will
be presented.

2 LHC simulations

2.1 Simulation parameters

For a future installation of the electron lens the LHC two possible locations,
immediately downstream and upstream of IP4 (RB44-RB46). In this lo-
cation there are about 420 mm in between the two beam pipes. At first
the possibility to insert an already available device (currently in FNAL) has
been evaluated, so the outer physical dimensions of such a device has been
considered for preliminary implementation studies. Since on the outer side
of the ring the QRL (Quench Recovery Line) pipes are very close to the beam
pipe, not enough lateral space would have been available for positioning the
device for Beam 2. However, thanks to the effort to FNAL engineers and of
the LHC integration teams, it was been verified that a simple rotation of the
external cryostat of only 10 degrees would have been enough to allow the
installation of the device in RB46 for Beam 1. Dispersion is almost totally
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Figure 5: Beta and dispersion functions for the horizontal and vertical ori-
entation at the LSS4, LHC, collision optics for Beam 1.
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Figure 6: Beta and dispersion functions for the horizontal and vertical ori-
entation at the LSS4, LHC, collision optics for Beam 2.

suppressed in the whole region: it is of the order of 10 cm both in horizon-
tal and in vertical plane. See Figure 5 and Figure 6 for computed optical
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function plots (by MADX), both for Beam 1 and Beam 2. Since in RB46 the
β-functions are close to round beam both for Beam 1 and for Beam 2, we
selected this location for our simulation campaign.

All the simulations assume typical parameters for the electron lens (cur-
rent 1.2 A, extraction voltage 5 KeV). The nominal 7 TeV LHC squeezed
optics has been simulated, sextupoles included, octupoles switched off. The
case of purely horizontal (and vertical) halo has been studied, generat-
ing an on momentum halo with nominal normalized beam emittance of
3.75 10−6 m rad. Since the results doe not substantially differ for the verti-
cal and horizontal case, only the horizontal case is presented in this report.
The machine is in storage mode, and no diffusive effects or beam beam in-
teractions have been included. The simulation have been performed with
SixTrack (collimation version), where a model describing the ideal electron
lens has been implemented as a new collimator-type element.

The inner radius of the electron lens has been fixed to 4σx|y in case,
respectively, of horizontal or vertical halo simulations. The absolute kick
value given by the electron lens in function of the distance from the center
is shown in Figure 4, both the simulation results and the analytical expec-
tation.

Table 1: Main optics parameters for the collimators simulated in Sixtrack.

name s αx βx αy βy µx µy
[m] [ - ] [m] [ - ] [m] [ - ] [ - ]

ELENSE 10037 0.318 181.8 -0.962 179.9 24.36 22.24
TCP.D6L7.B1 19789.2 2.120 158.9 -1.097 78.26 47.34 43.42
TCP.C6L7.B1 19791.2 2.051 150.5 -1.153 82.76 47.34 43.42

σx σ′x σy σ′y
[µm] [µrad] [µm] [µrad]

ELENSE 302.3 1.74 300.7 2.32
TCP.D6L7.B1 282.54 4.17 198.3 3.76
TCP.C6L7.B1 275.02 4.17 203.9 3.76

2.2 DC mode

As discussed in Section 1, we expect the DC mode of the electron lens to
introduce a deformation of the particle orbit in the phase space and a tune
shift. This has been verified by simulations.

In case of quasi-linear machine (linear machine and sextupoles), the tune
shift of the particle is of the order of few 10−4 and depends on particles
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Figure 7: The fractional part of the horizontal tune in dependence on the
particle average amplitude for a quasi-linear machine. In case of no electron
lens, the slope is caused by the other non linear elements (sextupole) in the
optics.
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Figure 8: The fractional part of the horizontal tune in dependence on the
particle average amplitude, when octupoles are included in the simulation.
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initial conditions, as shown in Figure 7: as expected the tune shift is always
positive (because the electron lens is always focusing) and larger for particles
with a larger betatronic amplitude. Since the electron lens kick amplitude
depends linearly on the particle position, it follows that the dependency on
the tune shift by the initial amplitude is also linear with the particle initial
amplitude. The tune shift reaches a maximum value of about 5 10−4. Given
the LHC extremely stable working point, such a tune shift is not sufficient
for driving the particle into a high order machine resonance. The jitter in
time of the tune is also negligible, at least up to a precision of about 1 10−5.

When including non linear elements such as the octupoles in the simu-
lation, the particle tune is heavily affected: the whole tune range is shifted
and the spread is about a factor 100 larger. By dedicate studies it was ob-
served that the regular tune increase with respect to the particle amplitude
is interrupted only at about 5.7 σx. After further investigation, studying
the phase space portraits of particles with about 5.7 σx, it was found out
that a high-order resonance sits there when the electron lens is present.
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Figure 9: Close-in of the horizontal phase space for the same particle in case
with (BLUE) and without electron lens (BLACK), for a particle which has
a normalized amplitude of about 5.7 σx. The RED line correspond to the
case of electron lens with current jitter.

In Figure 9, the deformation of the phase space induced by the non
linearity of the electron lens is presented for the electron lens in the non
linear machine. A maximum amplitude oscillation of the order of few hun-
dreths of sigma is introduced by the electron lens. When adding a jitter
of ±2% in the electron beam current, the electron lens begins to show a
diffusive effect, as shown in Figure 9: in this case the amplitude change is
enough to drive the particle in the high resonance sitting at about 5.7 sigma.
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2.3 AC mode

In order to enhance the efficiency of the electron lens as a scraper, it was
proposed to put the electron lens in resonance with the betatronic oscillation
of the particles. The basic idea is to use the electron lens for giving a periodic
kick which follows the periodicity of the betatronic tune. In order to find the
right resonance frequency, it is useful to consider the equation of a purely
horizontal (or vertical) motion of a particle at the electron lens location.
Neglecting the non linear elements in the machine it is clear that, when
the electron lens is not active, the equation of motion in the normalized
coordinate space is the equation of an harmonic oscillator:

mẍ+ kx = 0 (5)

where the natural oscillation frequency ω0 =
√
k/m is the particle be-

tatron tune in the considered plane. When the particle is subject to the
electron lens force, the equation becomes:

mẍ+ kx = −f(x) (6)

where in general −f(x) is an highly non linear force. It is possible
however to consider the simple case of a non-hollow flat lens and to study
the motion for a limited transverse range, which is a good approximation
because the available aperture is limited by the collimator aperture, which
is usually lower than the electron lens outer radius. In this case the electron
lens the force is nearly linear with the transverse position, and the equation
of motion is:

mẍ+ kx = −kDC x

mẍ+ (k + kDC)x = 0 (7)

and the electron lens effect is simply to increase the particle oscilla-
tion frequency from ω0 to ωDC =

√
(k + kDC)/m. For focusing forces, i.e.

kDC > 0, the frequency of the oscillation increases (i.e. increases the tune).

We shall now consider the case where the electron lens beam current
is variable in time, so that f = f(x, t). Being the e-lens force directly
proportional to the total e-beam current, we can decouple the spatial and
time-dependent part. A positive modulation function g(t), varying between
zero and one, represents the e-lens pulsing waveform; it is natural to start
with the simplest possible shape for such function, i.e. a pure harmonic with
frequency ωr:

g(t) = (1 + sinωet)/2 (8)

When the electron lens is modulated, the particle motion equation is there-
fore:

mẍ+ [k + kDC(1 + sinωet)] x = 0
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ẍ+

[
ω2
DC

(
1 +

kDC

k + kDC
sinωet

)]
x = 0 (9)

Equation 9 is known, in physics mathematics, as Mathieus equation. In
case kDC

k+kDC
<< 1 , it describes a parametric resonance which is peaked in

ωe = 2ωDC + ε, with ε:

−1

2

kDC

k + kDC
ω < ε <

1

2

kDC

k + kDC
ω (10)

Considering therelation between the relaton between k and w:

k + kDC = w2
DC m (11)

k = w2
0m (12)

and therefore:
kDC

k + kDC
=
ω2
DC − ω2

0

ω2
DC

(13)

Considering the fact that tune and frequency are directly proportional and
using the tune values presented in Figure ??, we have that ωDC = ω0 + δω
with δω << ω. The previous equation then is:

kDC

k + kDC
=

2ω0δω + δω2

ω2
0 + 2ω0δω + δω2

≈ 2δω

ω0
<< 1 (14)

which demonstrate that the electron lens case can actually be considered
a case of parametric resonance. The parametric resonance width ε therefore
results:

−δω < ε < δω (15)

meaning that the resonance is excited only if the difference between the
applied frequency ωe and the exact resonance frequency 2ωr is less than the
induced tune spread.

The exact transposition to the case of the non-linear force generated by
an hollow electron lens (Figure 4) is not straightforward. Instead of the
well-know equation 7, the equation of motion would be:

mẍ+ kx = −f(x) (16)

where f(x) could be approximated with a high order polynomial. The so-
lution of such a differential equation is not straightforward. In order to
identify the optimal excitation frequency, we simulated the scraping effect
of an el-lens driven by different multiples of the natural frequency n·ω0, with
the multiplying factor n in the range {1, 2...10}. However, when octupoles
are present, it is difficult to define the natural frequency ω0: as shown in
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Figure 8 ω0 spans in a wide range. In order to overcome this complication,
the e-lens excitation frequency is varied between n · 0.3104 and n · 0.3136,
in frequency steps of 2 10−5, one step every 103 turns. The total number of
turns simulated is 2 · 105.

Since the purpose of this simulation is to evaluate the efficiency of the
electron lens and not to study the losses in the machine, the simulated colli-
mation system has been reduced to only two elements: an e-lens in AC mode
(inner radius 4 σx) and a standard LHC horizontal primary collimator in IP7
(TCP.C6L7.B1, aperture 6.2 σx). The radial electron lens has been used,
and there is no jitter of the electron beam intensity. The primary collimator
has been treated as a black absorber. The initial distribution is a uniform
flat distribution between 4 and 6 σx. The LHC optics is the standard LHC
case at 7 TeV with octupoles at maximum strenght.

In order to qualify the efficacy of the electron lens as a scraper, we use
the global scraping efficiency, defined as:

ηg(t) = N(t)/N0 (17)

where N(t) is the number of particles which have not been removd after
t turns over the initial number of particles N0. This quantity is obviously
dependent on the initial distribution: for all the simulation presented in
this report the initial halo distribution is a uniform flat distribution in the
amplitude space between 4σ and 6σ. Only the simulations about horizon-
thal plane are here presented, nut the vertical plane presents no significant
differences.

In Figure 10 the global scraping efficiency ρs(2 · 105) is presented for
different multiplication factors. It can be noticed that there is a different re-
sponse to odd and even multiplication factors. The most effective resonancy
frequeny is 2ω0, as expected in the case of simple parametric hoscillations.

2.3.1 Optimization of frequency sweep

The electron lens simulated configurations can be divided in two groups: the
”low step” series, corresponding to tune step of 2 10−5 and the ”high step”
series, with tune step of 5 10−5. The total covered range varies from 8 10−4

to 32 10−4 in tune units. Considering the revolution frequency of the LHC
f = 11.245 KHz, the tune range and the e-lens frequency multiplication
factor of two, this is equivalent to sweeping through in the frequency range
[43 : 947 : 44.230] KHz with steps of 2.82 Hz (low step case) or 7.06 Hz (high
step case) every 89 ms (1000 turns).
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Figure 10: Relative number of survival particles after 2·105 turns for different
exctitation frequency n · ω0 of the AC electron lens.

Table 2: sweeping parameters

Label fmin fmax Favg ∆f Frequency Step Turns per step
L8 .3116 .3124 .3120 .0008 2 10−5 103

L10 .3115 .3125 .3120 .0010 2 10−5 103

L16 .3112 .3128 .3120 .0016 2 10−5 103

L20 .3110 .3130 .3120 .0020 2 10−5 103

L32 .3104 .3136 .3120 .0032 2 10−5 103

H5 .31175 .31225 .3120 .005 5 10−5 103

H10 .3115 .3125 .3120 .0010 5 10−5 103

H15 .31125 .31275 .3120 .0015 5 10−5 103

H20 .3110 .3130 .3120 .0020 5 10−5 103

H30 .3105 .3135 .3120 .0030 5 10−5 103

A summary table of the tested range-step combinations is presented in
Table 2. The corresponding global scraping inefficiencies are presented in
Figure 11. Most cases do not significantly differ in global scraping efficiency,
as far as the sweeping range is not too different from the tune range we want
to cover. In fact we noticed that an optimal sweeping range is between one
third and one half of the total tune range.
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To study the amplitude distribution of the survival particles, a new qual-
ifying parameter has been introduced, i.e. the local scraping inefficiency
η(a, t):

η(a, t) = dN(a, t)/dN0(a) (18)

where dN(a, t) is the number of particles with amplitude in the range
[a, a+ da] at the turn t and dN0(a) is the correspondent number of par-
ticle at the initial turn. Being a normalized quantity, the local scraping
inefficiency has the clear advantage of non depending on the initial distri-
bution.

The local scraping efficiency for the most performing case (i.e. H20) is
shown in Figure 12 . It can be noticed that the e-lens is much more effective
for high amplitude particles (after about 4.5 σx), where the scraping ineffi-
ciency is lower than 10−2-10−3. The low amplitude particles, on the other
hand, are hardly affected.

2.4 Random noise mode

It is worth noting that the AC mode requires accurate knowledge of the ma-
chine tune and a separate procedure for the horizontal and for the vertical
case. An alternative use for the electron lens could be to use the device as a
random diffuser acting only on the beam halo. I was already observed that,
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by including a beam current jitter in the DC elens, a mild diffusive effect
started to appear. To exploit and maximize this process, the kicks given by
the electron lens should include a random component. This can easily be
achieved by using a white noise generator to drive the electron lens current.
Given the nature of the electron lens, the rms kicks will obviously be larger
for high amplitude particles (see the full power kick in Figure 4).

Two different approaches where tested:

- Random mode: the electron beam current was modulated on turn by
turn basis by a random multiplier in the range [0,1];

- ON-OFF mode: then electron beam was ei ther reduced to zero (OFF)
or at its full power (ON) randomly on a turn-by-turn basis.

The comparison between the two different methods can be appreciated
in Figure 13: the global scraping efficiency after 2e5 turns for the ON-
OFF method is about 0.50 ± 0.01, while for the random method it is only
0.67± 0.01.

The huge advantage of this method is that it is completely uncorrelated
with the particle state (both amplitude and tune) and would not require
perfect knowledge of the tune or complicated modulation to be performed
first fort the horizontal and later for the vertical case.
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The price to pay for an easier and more robust operation mode is, how-
ever, the scraping time. The random ON-OFF about a factor 5 slower that
the optimal AC mode: after 2 105 turns, only 50% of the particles have been
scraped; for this reason longer simulations have been performed. In order
to achieve a number of scraper particles comparable with the AC scraping
mode, the number of turn has been increased to 106. The number of sur-
vival particles versus the turn number is shown in Figure 14. However, being
the electron lens kick proportional to the total electron beam current, the
scraping efficiency can be easily increased by increasing the beam current.
In Figure 14,an electron lens with doubled beam current (2.4 A) is com-
pared with the standard electron lens (1.2 A): in case of enhanced current
the global scraping inefficiency is almost halved, reaching a cleaning of more
than 70% of the halo particles in 20s.
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